• 首 页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  • 首页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Comparison of spatial sampling strategies for ground sampling and validation of MODIS LAI products

来源:

来源:   |  发布时间:2015-01-09   |  【 大  中  小 】

Yanling Ding,Yong Ge, Maogui Hu,Jinfeng Wang, Jianghao Wang,Xingming Zheng,Kai Zhao*. International Journal of Remote Sensing, 2014,35:20, 7230–7244.

Abstract:The development of an efficient ground sampling strategy is critical to assess uncertainties associated with moderate- or coarse-resolution remote-sensing products. This work presents a comparison of estimating spatial means from fine spatial resolution images using spatial random sampling (SRS), Block Kriging (BK), and Means of Surface with Nonhomogeneity (MSN) at 1 km2 spatial scale. Towards this goal, we focus on the sampling strategies for ground data measurements and provide an assessment of the MODIS LAI product validated by the spatial means estimated by the above-mentioned three methods. The results of this study indicate that: (1) for its effective stratification strategies and its criteria of minimum mean square estimation error, MSN demonstrates the lowest mean squared estimation error for estimating the means of stratified nonhomogeneous surface; (2) BK is efficient in estimating the means of homogeneous surfaces without bias and with minimum mean squared estimation errors. The MODIS LAI product is assessed using the means estimated by SRS, BK, and MSN based on Landsat 8 OLI and SPOT HRV fine-resolution LAI maps. For heterogeneous surfaces, MSN results in low RMSE and high accuracy of MODIS LAI product compared with BK and SRS, whereas for homogeneous surfaces, the statistical parameters outputted by these three methods are similar. These results reveal that MSN is an effective method for estimating the spatial means for heterogeneous surfaces. There are differences in the accuracies of MODIS LAI product assessed by these three methods.


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn