• 首 页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  • 首页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Spatiotemporal analysis of snow depth inversion based on the FengYun-3B MicroWave Radiation Imager: a case study in Heilongjiang Province, China

来源:

来源:   |  发布时间:2015-01-13   |  【 大  中  小 】

Xiaofeng Li, Kai Zhao, Lili Wu, Xingming Zheng, Tao Jiang. Journal of Applied Remote Sensing, 2014, 8(1), 084692 (May 19, 2014)

Abstract:To improve snow depth (SD) inversion algorithms using passive microwave data, it is important to objectively assess their accuracy and to analyze their uncertainty. Some previous studies validated the inversion algorithms only using spatial data at a fixed time node, which is not objective or convincing. The spatiotemporal analysis of the SD inversion based on the FengYun-3B MicroWave Radiation Imager is performed in Heilongjiang Province, China.Based on the temporal analysis, the results show that the accuracy of SD inversion algorithms is different at different time phases throughout the winter. In cropland areas, the variation in snow properties, particularly the increase in snow grain and the presence of depth hoar, leads to underestimation and overestimation at the earlier and later phases, respectively. The spatial analysis shows that the SD in the high forest coverage regions is seriously overestimated due to the addition of a forest correction factor using the Chang algorithm. In addition, the complex underlying surfaces and hilly terrain are also influencing factors that result in the low accuracy for several regions. Therefore, the analysis and identification of these uncertainties are benefits not only in understanding the influential factors of SD inversion algorithms but also in developing better algorithms for the next generation of SD retrieval

Keywards:snow depth inversion; spatiotemporal analysis; passive microwave remote sensing;FY-3B MicroWave Radiation Imager.


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn