• 首 页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  • 首页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Performance of Four Passive Microwave Soil Moisture Products in Maize Cultivation Areas of Northeast China

来源:

来源:   |  发布时间:2021-01-25   |  【 大  中  小 】

Xingming Zheng , Member, IEEE, Zhuangzhuang Feng, Hongxin Xu, Yanlong Sun, Yu Bai, Bingze Li, Lei Li,Xiaowei Zhao, Rui Zhang, Tao Jiang, Member, IEEE, Xiaojie Li, and Xiaofeng Li, Member, IEEE 

Abstract:

Passive microwave remote sensing is an effective way to obtain global soil moisture (SM) measurements, and many studies have explored the uncertainty inherent in microwave-based SM products. However, SM product accuracy has not been evaluated in northeast China, a national and global production base for commoditygrain.Inthisstudy,aground-basedwirelesssensornetwork with 28 observation nodes that were spatially distributed within 36 × 36 km was established to achieve satellite-scale “true” SM values through sensor calibration for specific soil types, senor consistencytesting,andspatialscaletransformation.Theuncertainties of four passive microwave SM products (SMAP L3, SMOS L3, the Japan Aerospace Exploration Agency/JAXA AMSR2, and FY3C) were investigated and the following conclusions were obtained: 1) SMAP SM accuracy was very close to the expected application accuracy of 0.04 cm3/cm3, followed by SMOS, FY3C, and AMSR2; 2)forSMOSandSMAP,therewerenosignificanttemporalchanges in SM errors, except for the larger error of descending SMOS SM and June SM values for descending SMAP and ascending SMOS. AMSR2 SM generally underestimated field SM, while FY3C SM values under low vegetation conditions were more consistent with field data, with an error of about 0.06 cm3/cm3; 3) agricultural activities and rainfall caused the soil surface roughness to increase or decrease within a growing season, which may have been an important source of satellite-scale SM error indicated by high bias values in July for both SMAP and SMOS; and 4) the standard deviation of field SM (0.06 cm3/cm3) produced a SMAP SM error of about 0.06 cm3/cm3 in low vegetation water content conditions, indicating that SM spatial heterogeneity cannot be ignored in the retrieval algorithm. This article investigated the accuracy and error sources of four satellite SM products in the farmland area of northeast China, and identified future research directions for further improving SM algorithms. 

Index Terms:China, farmland, passive microwave remote sensing, soil moisture (SM), validation.

Links to the paper:https://ieeexplore.ieee.org/document/9096583

 

 


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn