• 首 页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  • 首页
  • 遥感站简介
  • 研究方向
    • 地物波谱特性时空变化特征
    • 遥感产品地面真实性检验
    • 微波遥感基础理论及产品算法
    • 光学与微波大气环境监测
  • 队伍构成
    • 站长
    • 副站长
    • 科研人员
    • 研究生培养
  • 科研设备
    • 设备介绍
    • 设备使用情况及申请
  • 科研成果
    • 专利与著作权
    • 荣获奖励
    • 学术文章
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Development of a Pixel-Wise Forest Transmissivity Model at Frequencies of 19 GHz and 37 GHz for Snow Depth Inversion in Northeast China

来源:

来源:   |  发布时间:2022-12-29   |  【 大  中  小 】

第一作者:Wang, Guang-Rui
   英文第一作者: Wang, Guang-Rui
   联系作者:Li, Xiao-Feng
   英文联系作者:Li, Xiao-Feng
   发表年度:2022
   卷:14
   刊物名称:Remote Sensing

摘要:Satellite passive microwave remote sensing has been extensively used to estimate snow depth (SD) and snow water equivalent (SWE) across both regional and continental scales. However, the presence of forests causes significant uncertainties in the estimations of snow parameters. Forest transmissivity is one of the most important parameters for describing the microwave radiation and scattering characteristics of forest canopies. Although many researchers have constructed models for the functional relationship between forest transmissivity and forest vegetation parameters (e.g., stand growth and accumulation), such relationships are strongly limited by the inversion accuracy of vegetation parameters, forest distribution types, and scale-transformation effects in terms of regional or global scale applications. In this research, we propose a pixel-wise forest transmissivity estimation model (Pixel-wise gamma Model) based on long-term series satellite brightness temperature (TB) data for the satellite remote sensing inversion of snow parameters. The model performance is evaluated and applied in SD inversion. The results show that the SD inversion errors RMSE and Bias are 9.8 cm and -1.5 cm, respectively; the SD inversion results are improved by 41% and 84% after using the Pixel-wise gamma Model, compared with the forest transmissivity model applied in the GlobSnow v3.0 product. The proposed forest transmissivity model does not depend on forest cover parameters and other ground measurement parameters, which greatly improves its application scope and simplicity.


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn