• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA

来源:

来源:   |  发布时间:2016-08-24   |  【 大  中  小 】

论文题目:

Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA

英文论文题目:

Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA

第一作者:

李晓宇

英文第一作者:

Li, X. Y.

联系作者:

Mitsch, W. J.

英文联系作者:

Mitsch, W. J.

发表年度:

2016

卷:

91

页码:

529-536

摘要:

It is important to estimate greenhouse gas emissions from newly created and restored wetlands so that we learn how to design them to minimize these emissions. Spatial and temporal patterns of methane emissions were measured in three wetland marsh complexes in southwest Florida: a created freshwater marsh on a university campus, a restored brackish/salt marsh on the fringe of a mangrove (Rhizophora mangle) coastal swamp; and a natural freshwater marsh adjacent to a cypress (Taxodium distichum) strand. Non steady -state rigid chambers were used twice a day (morning and afternoon) on a monthly schedule for 13 months. The mean +/- standard error (median) of methane emissions from permanently and intermittently flooded areas were 124 +/- 47 (0) and 0.8 +/- 0.7 (0) g-CH4-C m(-2) y(-1) in the created freshwater marsh, and 58 +/- 14 (9.4) and 0.1 +/- 0.3 (0) g-CH4-C m(-2) y(-1) in the restored brackish marsh. Methane missions were 0.8 +/- 0.5 (0) g-CH4-C M-2 y(-1) in the intermittently flooded natural freshwater marsh that served as our control. In general, average methane emissions were higher from permanently than intermittently flooding areas (P<0.05); our data suggested that ebullition may have occurred in permanently flooding areas and caused up to 6.3 g-CH4-C m(-2) d(-1) in pulses in the created marsh and 1.7 g-CH4-C m(-2) d(-1) in the restored marsh. Removing ebullition outliers, methane emission estimates decreased by onefourth to one-half the annual rates given above to 30 g-CH4-C m(-2) y(-1) in permanent created freshwater marshes and 27 g-CH4-C m(-2) y(-1) in the restored brackish marshes. There were no significant differences in methane emissions from created, restored or natural marshes in intermittently flooding areas (P > 0.05). CH4 emissions exhibited strong quadratic and linear relationships with water depth when all sites were compared (P< 0.05), but no significant relationships with soil temperature or salinity. These results give useful information on ways to minimize methane emissions when creating and restoring wetlands. But these results should be only one of the considerations for wetland design as other ecosystem services should also be considered.

英文摘要:

It is important to estimate greenhouse gas emissions from newly created and restored wetlands so that we learn how to design them to minimize these emissions. Spatial and temporal patterns of methane emissions were measured in three wetland marsh complexes in southwest Florida: a created freshwater marsh on a university campus, a restored brackish/salt marsh on the fringe of a mangrove (Rhizophora mangle) coastal swamp; and a natural freshwater marsh adjacent to a cypress (Taxodium distichum) strand. Non steady -state rigid chambers were used twice a day (morning and afternoon) on a monthly schedule for 13 months. The mean +/- standard error (median) of methane emissions from permanently and intermittently flooded areas were 124 +/- 47 (0) and 0.8 +/- 0.7 (0) g-CH4-C m(-2) y(-1) in the created freshwater marsh, and 58 +/- 14 (9.4) and 0.1 +/- 0.3 (0) g-CH4-C m(-2) y(-1) in the restored brackish marsh. Methane missions were 0.8 +/- 0.5 (0) g-CH4-C M-2 y(-1) in the intermittently flooded natural freshwater marsh that served as our control. In general, average methane emissions were higher from permanently than intermittently flooding areas (P<0.05); our data suggested that ebullition may have occurred in permanently flooding areas and caused up to 6.3 g-CH4-C m(-2) d(-1) in pulses in the created marsh and 1.7 g-CH4-C m(-2) d(-1) in the restored marsh. Removing ebullition outliers, methane emission estimates decreased by onefourth to one-half the annual rates given above to 30 g-CH4-C m(-2) y(-1) in permanent created freshwater marshes and 27 g-CH4-C m(-2) y(-1) in the restored brackish marshes. There were no significant differences in methane emissions from created, restored or natural marshes in intermittently flooding areas (P > 0.05). CH4 emissions exhibited strong quadratic and linear relationships with water depth when all sites were compared (P< 0.05), but no significant relationships with soil temperature or salinity. These results give useful information on ways to minimize methane emissions when creating and restoring wetlands. But these results should be only one of the considerations for wetland design as other ecosystem services should also be considered.

刊物名称:

Ecological Engineering

英文刊物名称:

Ecological Engineering


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn