• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Water Quality Analysis and Prediction Using Hybrid Time Series and Neural Network Models

来源:

来源:   |  发布时间:2016-11-02   |  【 大  中  小 】

论文题目:

Water Quality Analysis and Prediction Using Hybrid Time Series and Neural Network Models

英文论文题目:

Water Quality Analysis and Prediction Using Hybrid Time Series and Neural Network Models

第一作者:

张蕾

英文第一作者:

Zhang, L.

联系作者:

章光新

英文联系作者:

Zhang, G. X.

发表年度:

2016

卷:

18

期:

4

页码:

975-983  

摘要:

Chagan Lake serves as an important ecological barrier in western Jilin. Accurate water quality series predictions for Chagan Lake are essential to the maintenance of water environment security. In the present study, a hybrid AutoRegressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Network (RBFNN) model is used to predict and examine the water quality [Total Nitrogen (TN), and Total Phosphorus (TP)] of Chagan Lake. The results reveal the following: (1) TN concentrations in Chagan Lake increased slightly from 2006 to 2011, though yearly variations in TP were not significant. The TN and TP levels were mainly classified as Grades IV and V, (2) The hybrid ARIMA and RBFNN model's RMSE values for the observed and predicted data were 0.139 and 0.036 mg L-1 for TN and TP, respectively, which indicated that the hybrid model describes TN and TP variations more comprehensively and accurately than single ARIMA and RBFNN model. The results serve as a theoretical basis for ecological and environmental monitoring of Chagan Lake and may help guide irrigation district and water project construction planning for western Jilin Province.

英文摘要:

Chagan Lake serves as an important ecological barrier in western Jilin. Accurate water quality series predictions for Chagan Lake are essential to the maintenance of water environment security. In the present study, a hybrid AutoRegressive Integrated Moving Average (ARIMA) and Radial Basis Function Neural Network (RBFNN) model is used to predict and examine the water quality [Total Nitrogen (TN), and Total Phosphorus (TP)] of Chagan Lake. The results reveal the following: (1) TN concentrations in Chagan Lake increased slightly from 2006 to 2011, though yearly variations in TP were not significant. The TN and TP levels were mainly classified as Grades IV and V, (2) The hybrid ARIMA and RBFNN model's RMSE values for the observed and predicted data were 0.139 and 0.036 mg L-1 for TN and TP, respectively, which indicated that the hybrid model describes TN and TP variations more comprehensively and accurately than single ARIMA and RBFNN model. The results serve as a theoretical basis for ecological and environmental monitoring of Chagan Lake and may help guide irrigation district and water project construction planning for western Jilin Province.

刊物名称:

Journal of Agricultural Science and Technology

英文刊物名称:

Journal of Agricultural Science and Technology

英文参与作者:

Zhang, G. X., Li, R. R.


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn