• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Remote estimation of K-d (PAR) using MODIS and Landsat imagery for turbid inland waters in Northeast China

来源:

来源:   |  发布时间:2017-04-13   |  【 大  中  小 】

论文题目:

Remote estimation of K-d (PAR) using MODIS and Landsat imagery for turbid inland waters in Northeast China

英文论文题目:

Remote estimation of K-d (PAR) using MODIS and Landsat imagery for turbid inland waters in Northeast China

第一作者:

宋开山

英文第一作者:

Song, K. S.

联系作者:

宋开山

英文联系作者:

Song, K. S.

发表年度:

2017

卷:

123

期:

 

页码:

159-172

摘要:

 Light availability for photosynthetically active radiation (PAR) is one of the major factors governing photosynthesis in aquatic ecosystems. Conventional measurements of light attenuation in the PAR domain (K-d(PAR)) is representative for only small areas of water body. Remotely sensed optical imagery can be utilized to monitor K-d(PAR) in large areas of water bodies, based on the relationship between water leaving radiance and K-d(PAR). In this study, six field surveys were conducted over 20 lakes (or reservoirs) across Northeast China from April to September 2015. In order to derive the K-d(PAR) at regional scale, the Landsat/TM/ETM+/OLI and the MODIS daily surface reflectance data (MOD09GA similar to 500 m, Bands 17) were used to establish empirical inversion models. Through multiple stepwise regression analysis, the band difference (Red-Blue) and band ratio (NIR/Red) were used in Landsat imagery modeling, and the band difference (Red-Blue) and ratio (Red/Blue) were used in MODIS imagery modeling. The accuracy of the two models was evaluated by 10-fold cross-validation in ten times. The results indicate that the models performed well for both Landsat (R-2 = 0.83, RMSE = 0.95, and MRE = 0.33), and MODIS (R-2 = 0.86, RMSE = 0.91, and MRE = 0.19) imagery. However, the K-d(PAR) derived by MODIS is slightly higher than that estimated by Landsat (slope = 1.203 and R-2 = 0.972). Consistency of model performance between the MODIS daily (MYDO9G A) and the 8-Day composite reflectance (MYDO9A1) data was verified by K-d(PAR) estimations and regression analysis (slope = 1.044 and R-2 = 0.966). Finally, the spatial and temporal distribution of K-d(PAR) in Northeast China indicated that specific geographical characteristics as well as meteorological alterations can influence K-d(PAR) calibrations. Specifically, we have revealed that the wind speed and algal bloom are the major determinants of K-d(PAR) in Lake Hulun (2050 km(2)) and Xingkai (4412 km(2)). (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

刊物名称:

Isprs Journal of Photogrammetry and Remote Sensing

英文刊物名称:

Isprs Journal of Photogrammetry and Remote Sensing

英文参与作者:

Ma, Jianhang ; Wen, Zhidan ;Fang, Chong ; Shang, Yingxin ;Zhao, Ying; Wang, Ming; Du, Jia


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn