• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding

来源:

来源:   |  发布时间:2019-08-21   |  【 大  中  小 】

论文题目:

Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding

英文论文题目:

Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding

第一作者:

欧洋

英文第一作者:

Yang Ou

联系作者:

王莉霞

英文联系作者:

Li X.Wang

发表年度:

2019

卷:

337

页码:

825-833

摘要:

In China, most riparian wetlands have undergone degradation and shrinkage, due to severe droughts or low hydrological connectivity. There are considerable studies focusing on the impact of water level on wetland vegetation; however, changes in the soil components, such as the microbial community, of wetlands following flooding remains unclear. Here, we verified the effects of an extreme flooding event on the soil physicochemical conditions, enzyme activities and soil microbial composition. Overall, we observed that the flooding event impacted the soil properties and modified the enzyme activities. Also, the flooding affected more the biomass

than the composition of the soil microbial community. We observed that after the flooding event, manganese (Mn) replaced total nitrogen (TN) as one of the major governing factors of soil enzyme activities. Soil organic carbon (SOC), and pH were also correlated with soil enzyme activities before and after the flooding event. Soil conductivity (EC), C/N ratio, and iron (Fe) contents had a large influence on microbial communities. Nevertheless, the soil C/N ratio was the dominant governing factor of the microbial structure. Therefore, edaphic factors were remarkably related to microbial organisms as flooding was deemed a key driving factor to the

linkage between them. The antecedent long-term drought provoked by human disturbance, and subsequent flooding (i.e., re-inundating) may thus damage the soil dynamics of riparian wetlands, and hence, altering the carbon storage capacity. The results of this study suggest that rehabilitating hydrological connectivity and promoting primary succession of vegetation could become effective practices for improving the soil ecosystem of riparian wetlands.

英文摘要:

In China, most riparian wetlands have undergone degradation and shrinkage, due to severe droughts or low hydrological connectivity. There are considerable studies focusing on the impact of water level on wetland vegetation; however, changes in the soil components, such as the microbial community, of wetlands following flooding remains unclear. Here, we verified the effects of an extreme flooding event on the soil physicochemical conditions, enzyme activities and soil microbial composition. Overall, we observed that the flooding event impacted the soil properties and modified the enzyme activities. Also, the flooding affected more the biomass

than the composition of the soil microbial community. We observed that after the flooding event, manganese (Mn) replaced total nitrogen (TN) as one of the major governing factors of soil enzyme activities. Soil organic carbon (SOC), and pH were also correlated with soil enzyme activities before and after the flooding event. Soil conductivity (EC), C/N ratio, and iron (Fe) contents had a large influence on microbial communities. Nevertheless, the soil C/N ratio was the dominant governing factor of the microbial structure. Therefore, edaphic factors were remarkably related to microbial organisms as flooding was deemed a key driving factor to the

linkage between them. The antecedent long-term drought provoked by human disturbance, and subsequent flooding (i.e., re-inundating) may thus damage the soil dynamics of riparian wetlands, and hence, altering the carbon storage capacity. The results of this study suggest that rehabilitating hydrological connectivity and promoting primary succession of vegetation could become effective practices for improving the soil ecosystem of riparian wetlands.

刊物名称:

Geoderma

英文刊物名称:

Geoderma

参与作者:

Y. Ou, A. N. Rousseau, L. X. Wang, B. X. Yan, T. Gumiere and H. Zhu

英文参与作者:

Y. Ou, A. N. Rousseau, L. X. Wang, B. X. Yan, T. Gumiere and H. Zhu


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn