• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Growth, Nutrient Assimilation, and Carbohydrate Metabolism in Korean Pine (Pinus koraiensis) Seedlings in Response to Light Spectra

来源:

来源:   |  发布时间:2020-06-02   |  【 大  中  小 】

论文题目:

Growth, Nutrient Assimilation, and Carbohydrate Metabolism in Korean Pine (Pinus koraiensis) Seedlings in Response to Light Spectra

英文论文题目:

Growth, Nutrient Assimilation, and Carbohydrate Metabolism in Korean Pine (Pinus koraiensis) Seedlings in Response to Light Spectra

第一作者:

魏红旭

英文第一作者:

H. X. Wei

联系作者:

何兴元

英文联系作者:

X. Y. He

发表年度:

2020

卷:

11

摘要:

A need is growing to plant superior Korean pine (Pinus koraiensis Siebold & Zucc.) seedlings to cope with the degradation of secondary forests in Northeast Eurasia. The goal of this study was to detect the physiological effect on the quality of Korean pine seedlings exposed to a range of spectra. One-year-old seedlings (n = 6) were cultured in three light-emitting diode (LED) spectra (69-77 mu mol m(-2) S-1) of 13.9% red (R) + 77.0% green (G) + 9.2% blue (B) (R1BG5), 26.2% R + 70.2% G + 3.5% B (R2BG3), and 42.3% R + 57.3% G + 0.4% B (R3BG1). The spectrum of high-pressure sodium (HPS) lamps (43.9% R + 54.7% G + 1.5 B) was taken as the reference. Results showed that LED-lighting resulted in shorter seedlings with a greater diameter, shoot biomass, assessed quality, and sturdiness compared to those under the HPS-lighting. The R3BG1 spectrum reduced the shoot nitrogen (N) deficiency induced by the HPS spectrum, while the R1BG5 treatment induced a steady-state uptake of N and phosphorus (P) in whole-plant organs. The R1BG5 spectrum also resulted in a higher soluble sugar concentration and higher activities of glutamine synthetase and acid phosphatase in needles compared to the control. Seedlings in the R2BG3 spectrum had the highest concentrations of chlorophyll and soluble protein in the leaves. Overall, the R-high LED-spectrum could stimulate biomass accumulation in shoot, but meanwhile resulted in a P deficiency. Hence, the LED lighting in the R1BG5 spectrum is recommended to promote the quality of Korean pine seedlings.

英文摘要:

A need is growing to plant superior Korean pine (Pinus koraiensis Siebold & Zucc.) seedlings to cope with the degradation of secondary forests in Northeast Eurasia. The goal of this study was to detect the physiological effect on the quality of Korean pine seedlings exposed to a range of spectra. One-year-old seedlings (n = 6) were cultured in three light-emitting diode (LED) spectra (69-77 mu mol m(-2) S-1) of 13.9% red (R) + 77.0% green (G) + 9.2% blue (B) (R1BG5), 26.2% R + 70.2% G + 3.5% B (R2BG3), and 42.3% R + 57.3% G + 0.4% B (R3BG1). The spectrum of high-pressure sodium (HPS) lamps (43.9% R + 54.7% G + 1.5 B) was taken as the reference. Results showed that LED-lighting resulted in shorter seedlings with a greater diameter, shoot biomass, assessed quality, and sturdiness compared to those under the HPS-lighting. The R3BG1 spectrum reduced the shoot nitrogen (N) deficiency induced by the HPS spectrum, while the R1BG5 treatment induced a steady-state uptake of N and phosphorus (P) in whole-plant organs. The R1BG5 spectrum also resulted in a higher soluble sugar concentration and higher activities of glutamine synthetase and acid phosphatase in needles compared to the control. Seedlings in the R2BG3 spectrum had the highest concentrations of chlorophyll and soluble protein in the leaves. Overall, the R-high LED-spectrum could stimulate biomass accumulation in shoot, but meanwhile resulted in a P deficiency. Hence, the LED lighting in the R1BG5 spectrum is recommended to promote the quality of Korean pine seedlings.

刊物名称:

Forests

英文刊物名称:

Forests

参与作者:

H. X. Wei, R. J. Hauer, G. S. Chen, X. Chen and X. Y. He

英文参与作者:

H. X. Wei, R. J. Hauer, G. S. Chen, X. Chen and X. Y. He


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn