• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Absorption characteristics of CDOM in treated and non-treated urban lakes in Changchun, China

来源:

来源:   |  发布时间:2020-06-02   |  【 大  中  小 】

论文题目:

Absorption characteristics of CDOM in treated and non-treated urban lakes in Changchun, China

英文论文题目:

Absorption characteristics of CDOM in treated and non-treated urban lakes in Changchun, China

第一作者:

吕丽丽

英文第一作者:

L. L. Lyu

联系作者:

宋开山

英文联系作者:

K. S. Song

发表年度:

2020

卷:

182

摘要:

In urban settings, one may find (i) lakes that are non-treated (NT) and impacted by recurrent discharges of pollutants and nutrients, and (ii) lakes that, through restoration measures and active management, are treated (T) from external inputs. The optical properties of chromophoric dissolved organic matter (CDOM) have been used to assess the anthropogenic impact on lakes ecology, but their application in comparative assessments of urban lakes has not been attempted. For 2 years, we measured nutrients and CDOM properties in water samples collected from NT and T lakes in the city of Changchun, China. Significant differences in CDOM properties were found between the two types of lakes, and these results were supported by redundancy analysis. The NT lakes were eutrophic while the T lakes were mesotrophic, with mean trophic status index (TSI) of 74.2 and 50.3, respectively. The CDOM absorption coefficient at 350 nm, a(350), was 2-fold higher in NT than in T lakes (6.59 vs 3.21 m(-1)). In the NT lakes, CDOM components predominantly comprised large molecular weight (MW > 1000-Da) humus-like substances of allochthonous origin, whereas in the T lakes CDOM was dominated by low MW (< 1000-Da) substances from autochthonous production. Seasonal fluctuation has a great influence on the CDOM concentration, but a little influence on its molecular composition. The CDOM concentration were higher in summer than in other seasons. Weather conditions (rainfall, temperature) and biophysical processes (biodegradation, photo-bleaching) likely contributed to these variations. We found the water quality of the treated lakes was getting better from 2016 to 2018. In summary, the study results, not only revealed seasonal effects, but most importantly documented the impact of human activities on the characteristics of CDOM in urban lakes. Most specifically, the sharp difference between the lakes in regard to a(350) (2-fold lower in T than in NT lakes) demonstrated the suitability CDOM absorption coefficient as an early indicator of the impact of treatment measures on the hydrochemistry of DOM in urban lakes.

英文摘要:

In urban settings, one may find (i) lakes that are non-treated (NT) and impacted by recurrent discharges of pollutants and nutrients, and (ii) lakes that, through restoration measures and active management, are treated (T) from external inputs. The optical properties of chromophoric dissolved organic matter (CDOM) have been used to assess the anthropogenic impact on lakes ecology, but their application in comparative assessments of urban lakes has not been attempted. For 2 years, we measured nutrients and CDOM properties in water samples collected from NT and T lakes in the city of Changchun, China. Significant differences in CDOM properties were found between the two types of lakes, and these results were supported by redundancy analysis. The NT lakes were eutrophic while the T lakes were mesotrophic, with mean trophic status index (TSI) of 74.2 and 50.3, respectively. The CDOM absorption coefficient at 350 nm, a(350), was 2-fold higher in NT than in T lakes (6.59 vs 3.21 m(-1)). In the NT lakes, CDOM components predominantly comprised large molecular weight (MW > 1000-Da) humus-like substances of allochthonous origin, whereas in the T lakes CDOM was dominated by low MW (< 1000-Da) substances from autochthonous production. Seasonal fluctuation has a great influence on the CDOM concentration, but a little influence on its molecular composition. The CDOM concentration were higher in summer than in other seasons. Weather conditions (rainfall, temperature) and biophysical processes (biodegradation, photo-bleaching) likely contributed to these variations. We found the water quality of the treated lakes was getting better from 2016 to 2018. In summary, the study results, not only revealed seasonal effects, but most importantly documented the impact of human activities on the characteristics of CDOM in urban lakes. Most specifically, the sharp difference between the lakes in regard to a(350) (2-fold lower in T than in NT lakes) demonstrated the suitability CDOM absorption coefficient as an early indicator of the impact of treatment measures on the hydrochemistry of DOM in urban lakes.

刊物名称:

Environmental Research

英文刊物名称:

Environmental Research

参与作者:

L. L. Lyu, Z. D. Wen, P. A. Jacinthe, Y. X. Shang, N. Zhang, G. Liu, C. Fang, J. B. Hou and K. S. Song

英文参与作者:

L. L. Lyu, Z. D. Wen, P. A. Jacinthe, Y. X. Shang, N. Zhang, G. Liu, C. Fang, J. B. Hou and K. S. Song


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn