• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands

来源:

来源:   |  发布时间:2020-12-17   |  【 大  中  小 】

论文题目:

Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands

英文论文题目:

Iron-bound organic carbon is conserved in the rhizosphere soil of freshwater wetlands

第一作者:

Duan, Xun

英文第一作者:

Duan, X

联系作者:

邹元春

英文联系作者:

Zou, Yuanchun

发表年度:

2020

卷:

149

摘要:

The greater number and activity of microorganisms in the rhizosphere than bulk soils is expected to affect iron (Fe) and carbon (C) biogeochemical cycling. We investigated the coupled relationships among Fe, C, and Fe-reducing bacteria (FeRB) in the rhizosphere and bulk soils of Calamagrostis angustifolia and Carex lasiocarpa in a freshwater wetland of international importance (i.e. Ramsar site) in Northeast China. Nonmetric multidimensional scaling analysis showed distinct clusters of FeRB in the ordination space of C. angustifolia and C. lasiocarpa associated with the rhizosphere (R = 0.707, p = 0.002 and R = 0.830, p = 0.004, respectively). The relative abundance of FeRB was significantly (p < 0.05) greater in the rhizosphere (3.3%) than the bulk soil (2.6%). The smaller Fe-bound organic carbon (OC-Fe) concentration in bulk soil could be the result of dissimilatory Fe reduction by FeRB (e.g. Anaeromyxobacter, Geobacter, Clostridium, and Bacillus). On average, there was significantly (p < 0.01) more OC-Fe in the rhizosphere soil of C. angustifolia and C. lasiocarpa (7.86 g OC-Fe/kg) than in bulk soils (2.36 g OC-Fe/kg). Structural equation modelling showed that FeRB and Fe oxides explained 65% of the variance in the OC-Fe concentration. Furthermore, the Fe(III) concentration (r = 0.62, p < 0.001) and organically complexed Fe oxides (r = 0.63, p < 0.001) significantly and directly affected the OC-Fe concentration, for aromatic, phenolic and carboxyl compounds bind preferentially to Fe oxides based on FTIR analysis. We conclude that the coupled Fe-C relationships will lead to an accumulation of OC-Fe in the rhizosphere soil, relative to bulk soil, in these freshwater wetlands.

英文摘要:

The greater number and activity of microorganisms in the rhizosphere than bulk soils is expected to affect iron (Fe) and carbon (C) biogeochemical cycling. We investigated the coupled relationships among Fe, C, and Fe-reducing bacteria (FeRB) in the rhizosphere and bulk soils of Calamagrostis angustifolia and Carex lasiocarpa in a freshwater wetland of international importance (i.e. Ramsar site) in Northeast China. Nonmetric multidimensional scaling analysis showed distinct clusters of FeRB in the ordination space of C. angustifolia and C. lasiocarpa associated with the rhizosphere (R = 0.707, p = 0.002 and R = 0.830, p = 0.004, respectively). The relative abundance of FeRB was significantly (p < 0.05) greater in the rhizosphere (3.3%) than the bulk soil (2.6%). The smaller Fe-bound organic carbon (OC-Fe) concentration in bulk soil could be the result of dissimilatory Fe reduction by FeRB (e.g. Anaeromyxobacter, Geobacter, Clostridium, and Bacillus). On average, there was significantly (p < 0.01) more OC-Fe in the rhizosphere soil of C. angustifolia and C. lasiocarpa (7.86 g OC-Fe/kg) than in bulk soils (2.36 g OC-Fe/kg). Structural equation modelling showed that FeRB and Fe oxides explained 65% of the variance in the OC-Fe concentration. Furthermore, the Fe(III) concentration (r = 0.62, p < 0.001) and organically complexed Fe oxides (r = 0.63, p < 0.001) significantly and directly affected the OC-Fe concentration, for aromatic, phenolic and carboxyl compounds bind preferentially to Fe oxides based on FTIR analysis. We conclude that the coupled Fe-C relationships will lead to an accumulation of OC-Fe in the rhizosphere soil, relative to bulk soil, in these freshwater wetlands.

刊物名称:

SOIL BIOLOGY & BIOCHEMISTRY

英文刊物名称:

SOIL BIOLOGY & BIOCHEMISTRY

参与作者:

Yu, Xiaofei;Li, Zhe;Wang, Qiguang;Liu, Ziping;Zou, Yuanchun

英文参与作者:

Yu, Xiaofei;Li, Zhe;Wang, Qiguang;Liu, Ziping;Zou, Yuanchun


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn