• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

Dynamic changes in microbial communities and nutrient stoichiometry associated with soil aggregate structure in restored wetlands

来源:

来源:   |  发布时间:2021-02-04   |  【 大  中  小 】

论文题目:

Dynamic changes in microbial communities and nutrient stoichiometry associated with soil aggregate structure in restored wetlands

英文论文题目:

Dynamic changes in microbial communities and nutrient stoichiometry associated with soil aggregate structure in restored wetlands

第一作者:

崔虎

英文第一作者:

H. Cui

联系作者:

王莉霞

英文联系作者:

L. X. Wang

发表年度:

2021

卷:

197

摘要:

Available information on interaction mechanisms between soil nutrient stoichiometry and microbial communities associated with soil aggregate structure in restored wetlands remains limited. As such, this study investigated water-stable aggregate structure using wet-sieving method and scanning electron microscope (SEM) in restored wetlands with a restoration duration of 0, 1, 2, 3, 5, 13 or 19 years, and their internal nutrient stoichiometry and microbial communities (phospholipid fatty acid analysis, PLFAs). The results showed that soil aggregate structure tended to be stable from the fifth restoration year. In the restored wetlands, General bacteria, Gram-positive bacteria (G(+)), and Gram-negative bacteria (G(-)) were the dominant components of soil microorganisms, which tented to condense in coarse-aggregates. The carbon-to-phosphorus (C:P) and nitrogen-to-phosphorus (N:P) ratios were higher in coarse-aggregates since C and N benefit from the physical protection. Redundancy analysis (RDA) results indicated that C:N ratio was primary environmental factors controlling the distribution of soil microbial communities. In the Sanjiang Plain, the soil organic carbon (SOC) decomposition was lower, and N was the primary nutrient limiting wetland restoration quality.

英文摘要:

Available information on interaction mechanisms between soil nutrient stoichiometry and microbial communities associated with soil aggregate structure in restored wetlands remains limited. As such, this study investigated water-stable aggregate structure using wet-sieving method and scanning electron microscope (SEM) in restored wetlands with a restoration duration of 0, 1, 2, 3, 5, 13 or 19 years, and their internal nutrient stoichiometry and microbial communities (phospholipid fatty acid analysis, PLFAs). The results showed that soil aggregate structure tended to be stable from the fifth restoration year. In the restored wetlands, General bacteria, Gram-positive bacteria (G(+)), and Gram-negative bacteria (G(-)) were the dominant components of soil microorganisms, which tented to condense in coarse-aggregates. The carbon-to-phosphorus (C:P) and nitrogen-to-phosphorus (N:P) ratios were higher in coarse-aggregates since C and N benefit from the physical protection. Redundancy analysis (RDA) results indicated that C:N ratio was primary environmental factors controlling the distribution of soil microbial communities. In the Sanjiang Plain, the soil organic carbon (SOC) decomposition was lower, and N was the primary nutrient limiting wetland restoration quality.

刊物名称:

Catena

英文刊物名称:

Catena

参与作者:

H. Cui, Y. Ou, L. X. Wang, A. Z. Liang, B. X. Yan and Y. X. Li

英文参与作者:

H. Cui, Y. Ou, L. X. Wang, A. Z. Liang, B. X. Yan and Y. X. Li


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn