• 首 页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  • 首页
  • 实验室简介
  • 科学研究
    • 实验室定位
    • 研究目标
    • 研究方向
    • 研究项目
    • 研究工作进展
  • 科研队伍
    • 队伍建设
    • 学科组
  • 研究生教育
    • 简介
    • 学科与学位点
    • 研究生导师
    • 在读研究生
    • 毕业研究生
  • 科研成果
    • 获奖
    • 专著
    • 学术论文
    • 专利
  • 联系我们
  1. 当前位置:首页    新闻动态    最新成果
最新成果

A new digital soil mapping method with temporal-spatial-spectral information derived from multi-source satellite images

来源:

来源:   |  发布时间:2023-01-06   |  【 大  中  小 】

 

第一作者:

Meng, Xiangtian

英文第一作者:

Meng, Xiangtian

联系作者:

Liu, Huanjun

英文联系作者:

Liu, Huanjun

发表年度:

2022

卷:

425

摘要:

 Detailed soil maps are essential for effective agricultural practices and environmental protection. Yet, despite the increasing accuracy of digital soil mapping (DSM) in recent years, generating regional-scale, high-accuracy soil maps remains a challenging task. Our study objective was to propose a new DSM method based on temporal -spatial-spectral (TSS) data and to compare the DSM result with a legacy soil map of China. In this study, 13 Landsat multispectral data from 2000 to 2019 were fused by discrete wavelet transform (DWT) to obtain tem-poral information, a shuttle radar topography mission digital elevation model (SRTM-DEM) was used as spatial information, and Gaofen-5 satellite hyperspectral data was used as spectral information. TSS information was obtained after the DWT and spectral band segmentation methods were used to fuse the temporal and spectral information, combined it with the spatial information. Then, the TSS information and random forest model were used for DSM. The results indicated that 1) The mapping result based on TSS information was highly correlated with the legacy soil map. In different soil classes, there were minute differences in the core area and large dif-ferences in adjacent soil classes between the two maps. The overall accuracy and kappa coefficient of DSM based on TSS information were 88.11% and 0.82, respectively. 2) With the same values of the soil moisture, the overall accuracy and kappa coefficient of DSM based on hyperspectral data were 6.80% and 0.02, respectively, higher than those based on multispectral data. 3) With increasing temporal information, the DSM accuracy continuously increased, and the mapping accuracy based on multi-temporal multispectral data was higher than that based on mono-temporal hyperspectral data when the number of multi-temporal multispectral images reached 6. 4) The DSM accuracy was effectively improved when terrain factors were considered, and the terrain factors featuring a strong separability for various soil classes differed. The DSM method proposed in this study based on TSS in-formation from multi-sources remote sensing data greatly improved the DSM accuracy and provided new insight for future DSM research.

刊物名称:

Geoderma

参与作者:

Meng, X. T. Bao, Y. L. Liu, H. J. Zhang, X. L. Wang, X.


附件下载:

版权所有 © 中国科学院长春净月潭遥感实验站 吉ICP备05002032号-1 吉公网安备22017302000214号
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话:+86 431 85542227  Email:jyrs@iga.ac.cn