论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文题目: Treatment of microcystin (MC-LR) and nutrients in eutrophic water by constructed wetlands: Performance and microbial community
英文论文题目: Treatment of microcystin (MC-LR) and nutrients in eutrophic water by constructed wetlands: Performance and microbial community
第一作者: Cheng, Rui
英文第一作者: Cheng, Rui
联系作者: 祝惠
英文联系作者: H. Zhu
发表年度: 2021
卷: 263
摘要:

Cyanobacterial harmful algal blooms and microcystins (MCs) pollution pose serious threat to aquatic ecosystem and public health. Planted and unplanted constructed wetlands (CWs) filled with four substrates (i.e., gravel (G-CWs), ceramsite (C-CWs), iron-carbon (I-CWs) and slag (S-CWs)) were established to evaluate nutrients and a typical MCs variant (i.e., MC-LR) removal efficiency from eutrophic water affected by the presence of plant and different substrate. The response of the microbial community to the above factors was also analyzed in this study. The results indicate that the presence of plant can generally enhance nutrients and MC-LR removal efficiency in CWs, except for I-CWs. Throughout the experiment, all CWs exhibited good nitrogen removal efficiency with removal percentages exceeding 90%; TP and MC-LR average removal efficiency of C-CWs and I-CWs were greater than G-CWs and S-CWs irrespective of the presence of plant. The best MC-LR removal efficiency under different MC-LR loads was observed in planted C-CWs (ranged from 91.56% to 95.16%). Except for I-CWs, the presence of plant can enhance relative abundances of functional microorganisms involved in nutrients removal (e.g., Comamonadaceae and Planctomycetaceae) and MCs degradation (e.g., Burkholderiaceae). The microbial community diversity of I-CWs was simplified, while the relative abundance of Proteobacteria was highest in this study. The highest relative abundances of Comamonadaceae, Planctomycetaceae and Burkholderiaceae were observed in planted C-CWs. Overall, ceramisite and iron-carbon were more suitable to be applied in CWs for nutrients and MC-LR removal. This study provides a theoretical basis for practical application of CWs in eutrophication and MCs pollution control. (C) 2020 Elsevier Ltd. All rights reserved.

英文摘要:

Cyanobacterial harmful algal blooms and microcystins (MCs) pollution pose serious threat to aquatic ecosystem and public health. Planted and unplanted constructed wetlands (CWs) filled with four substrates (i.e., gravel (G-CWs), ceramsite (C-CWs), iron-carbon (I-CWs) and slag (S-CWs)) were established to evaluate nutrients and a typical MCs variant (i.e., MC-LR) removal efficiency from eutrophic water affected by the presence of plant and different substrate. The response of the microbial community to the above factors was also analyzed in this study. The results indicate that the presence of plant can generally enhance nutrients and MC-LR removal efficiency in CWs, except for I-CWs. Throughout the experiment, all CWs exhibited good nitrogen removal efficiency with removal percentages exceeding 90%; TP and MC-LR average removal efficiency of C-CWs and I-CWs were greater than G-CWs and S-CWs irrespective of the presence of plant. The best MC-LR removal efficiency under different MC-LR loads was observed in planted C-CWs (ranged from 91.56% to 95.16%). Except for I-CWs, the presence of plant can enhance relative abundances of functional microorganisms involved in nutrients removal (e.g., Comamonadaceae and Planctomycetaceae) and MCs degradation (e.g., Burkholderiaceae). The microbial community diversity of I-CWs was simplified, while the relative abundance of Proteobacteria was highest in this study. The highest relative abundances of Comamonadaceae, Planctomycetaceae and Burkholderiaceae were observed in planted C-CWs. Overall, ceramisite and iron-carbon were more suitable to be applied in CWs for nutrients and MC-LR removal. This study provides a theoretical basis for practical application of CWs in eutrophication and MCs pollution control. (C) 2020 Elsevier Ltd. All rights reserved.

刊物名称: Chemosphere
英文刊物名称: Chemosphere
参与作者: R. Cheng, H. Zhu, B. Shutes and B. X. Yan
英文参与作者: R. Cheng, H. Zhu, B. Shutes and B. X. Yan
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1